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1. Introduction

Srivastava-Gupta [6], Gupta-Lupas [3], Gupta-Noor [4] etc. proposed
several types of combined operators. In this series we also propose a
new sequence of summation integral type operators Mn named as Beta
Szasz operators for f ∈ Cα[0,∞), whereas

Cα[0,∞) = {f ∈ C[0,∞) : |f(t)| ≤ Meαt}

for some M > 0, α > 0 and x ∈ [0,∞),

Mn(f, x) =

(
n

n+ 1

) ∞∑
v=1

bn,v(x)

∫ ∞

0

qn,v(t)f(t)dt, (1.1)

where

qn,v(x) = e−nx (nx)
v

(v)!
,

bn,v(x) =
1

B(n+ 1, v)

xv−1

(1 + x)n+v+1

are Szasz basis function and Beta basis function respectively.

In this paper, we give exciting approximation theorems for the linear
positive operators (1.1) such as simultaneous approximation, asymp-
totic formula and error estimation theorems . Many authors [1], [2], [5]
etc. have discussed earlier these properties for several operators and
found global results.
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2. Auxiliary Results

In this section we give some important lemmas related to the present
operators.

Lemma 1. For m ∈ N0, the mth order moment is obtained as

Un,m(x) =
1

n+ 1

∞∑
v=1

bn,v(x)

(
v

n+ 1
− x

)m

,

where Un,0(x) = 1, Un,1(x) =
1+x
n+1

and the recurrence formula is

(n+ 1)Un,m+1(x)x(1 + x)[U ′
n,m(x) +mUn,m−1(x)].

Consequently

Un,m(x) = O(n−[m+1]/2).

Lemma 2. For some polynomial qi,j,r(x) independent of n and v, we
have

[x(1 + x)]rDr(bn,v(x)) =
∑

2i+j≤r
i,j≥0

(n+ 2)i[(v− 1)− (n+ 2)x]qi,j,r(x)bn,v(x)

where D ≡ d
dx
.

The proof is too easy to prove.

Lemma 3. We suppose that Tn,m(x) represents the mth,m ≥ 0 central
moment for the operators and is defined as

Tn,m(x) =

(
n

n+ 1

) ∞∑
v=1

bn,v(x)

∫ ∞

0

qn,v(t)(t− x)mdt.

From here Tn,0(x) = 1, Tn,1(x) =
2(1+x)

n
, Tn,2(x) =

(n+6)(x+2)x+(n+6)+6
n2 .

Consequently the recurrence formula of Tn,m(x) for m > 2 is given
by

nTn,m+1(x) = x(1 + x)T ′
n,m(x) + (m+ 2 + 2x)Tn,m(x)

+mx(x+ 2)Tn,m−1(x).

Proof. The results of Tn,0(x), Tn,1(x) and Tn,2(x) are obvious from the
formula by substituting m = 0, 1, 2 respectively. To prove the recur-
rence formula firstly we give the two identities

x(1 + x)b′n,v(x) = [(v − 1)− (n+ 2)x]xbn,v(x)

tq′n,v(t) = [v − nt]qn,v(t).
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Now, we proceed as

T ′
n,m(x) =

(
n

n+ 1

) ∞∑
v=1

b′n,v(x)

∫ ∞

0

qn,v(t)(t− x)mdt−mTn,m−1(x).

Using the above identities after the multiply of x(1 + x), we get

x(1 + x)[T ′
n,m(x) +mTn,m−1(x)]

=

(
n

n+ 1

) ∞∑
v=1

x(1 + x)b′n,v(x)

∫ ∞

0

qn,v(t)(t− x)mdt

=

(
n

n+ 1

) ∞∑
v=1

[(v − 1)− (n+ 2)x]b′n,v(x)

∫ ∞

0

qn,v(t)(t− x)mdt

=

(
n

n+ 1

) ∞∑
v=1

bn,v(x)

∫ ∞

0

[(v − nt) + n(t− x)− (1 + 2x)]qn,v(t)

×(t− x)mdt

=

(
n

n+ 1

) ∞∑
v=1

bn,v(x)

∫ ∞

0

tq′n,v(t)(t− x)mdt+ nTn,m+1(x)

−(1 + 2x)Tn,m(x)

=

(
n

n+ 1

) ∞∑
v=1

bn,v(x)

∫ ∞

0

q′n,v(t)(t− x)m+1dt+

(
nx

n+ 1

)
×

∞∑
v=1

bn,v(x)

∫ ∞

0

q′n,v(t)(t− x)mdt+ nTn,m+1(x)

−(1 + 2x)Tn,m(x)

= −(m+ 1)Tn,m(x)−mxTn,m−1(x) + nTn,m+1(x)

−(1 + 2x)Tn,m(x)

= +nTn,m+1(x)− (m+ 2 + 2x)Tn,m(x)−mxTn,m−1(x).

Rearranging both sides, we get the required. �

Lemma 4. For given operators we can easily prove that

Mn(t
r; x) =

(n+ r + 1)!

(n+ 1)!nr
xr + (r + 1)r

(n+ r)!

(n+ 1)!nr
xr−1 +O(n−2).

3. Main Results

In this section, we prove some important theorems.
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3.1. Simultaneous approximation theorem.

Theorem 1. If f ∈ Cγ[0,∞), γ > 0 such that f is r-times differ-
entiable on [0,∞) then simultaneous approximation property for these
operators is satisfied, that is

lim
n→∞

[M (r)
n (f, x)− f (r)(x)] = 0.

Proof. Taylor’s expansion of f is given by

f(t) =
r∑

i=0

f (i)(x)

i!
(t− x)i + ϵ(t, x)(t− x)r,

where ϵ(t, x) → 0 as t → x. Therefore taking

Wn(t, x) =

(
n

n+ 1

) ∞∑
v=1

bn,v(x)qn,v(t),

we have

M (r)
n (f, x) =

r∑
i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt

+

∫ ∞

0

W (r)
n (t, x)ϵ(t, x)(t− x)rdt

:= I1 + I2.

To estimate I1, we expand (t− x)i and then use Lemma 4 as

I1 =
r∑

i=0

f (i)(x)

i!

i∑
k=0

(
i
k

)
(−x)i−k

∫ ∞

0

W (r)
n (t, x)tkdt

=
f (r)(x)

r!

∫ ∞

0

W (r)
n (t, x)trdt

→ f (r)(x)

as n → ∞. Now we consider about I2. Using Lemma 2

|I2| =

(
n

n+ 1

) ∞∑
v=1

∑
2i+j≤r
i,j≥0

(n+ 2)i
|qi,j,r(x)|
|x(1 + x)|r

|(v − 1)− (n+ 2)x|j

×bn,v(x)

∫ ∞

0

qn,v(t, x)|ϵ(t, x)||t− x|rdt

≤ K1

(
n

n+ 1

) ∞∑
v=1

∑
2i+j≤r
i,j≥0

(n+ 2)i
∞∑
v=1

|(v − 1)− (n+ 2)x|j
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×bn,v(x)

{
ϵ

∫
|t−x|<δ

qn,v(t, x)|t− x|rdt+K2

∫
|t−x|≥δ

qn,v(t, x)

×|t− x|sdt
}

:= I3 + I4

where for a given ϵ > 0 there exists a δ > 0 such that |ϵ(t, x)| < ϵ
whenever |t− x| < δ, and further we can find a constant K2 such that
|ϵ(t, x)||t− x|r ≤ K2|t− x|s for |t− x| ≥ δ where s ≥ {γ, r}, and

K1 = sup
2i+j≤r
i,j≥0

|qi,j,r(x)|
|x(1 + x)|r

.

Using Lemma 1 and Lemma 3 after applying Schwarz inequality in I3,
we get

I3 ≤ K3

∑
2i+j≤r
i,j≥0

(n+ 2)i

{
1

n+ 1

∞∑
v=1

bn,v(x)[(v − 1)− (n+ 2)x]2j

}1/2

×
{
n

∫ ∞

0

qn,v(t, x)dt

}1/2{
n

n+ 1

∞∑
v=1

bn,v(x)

∫ ∞

0

qn,v(t, x)

×|t− x|2rdt
}1/2

≤ ϵO(ni).O(nj/2).O(n−r/2) = ϵO(1).

To compute I4, we proceed in the similar manner as

I4 ≤ K3

∑
2i+j≤r
i,j≥0

(n+ 2)i

{
1

n+ 1

∞∑
v=1

bn,v(x)[(v − 1)− (n+ 2)x]2j

}1/2

×
{
n

∫ ∞

0

qn,v(t, x)dt

}1/2{
n

n+ 1

∞∑
v=1

bn,v(x)

∫ ∞

0

qn,v(t, x)

×|t− x|2sdt
}1/2

≤ O(ni).O(nj/2).O(n−s/2)

≤ O(n(r−s)/2 = o(1).

Thus for arbitrary ϵ > 0, we get I2 = o(1). Together with the estimates
of I1 and I2 we obtain the required proof of the theorem. �
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3.2. Direct Theorem.

Theorem 2. If f ∈ Cγ[0,∞), γ > 0 and r ≤ m ≤ (r + 2). Again, if
f (m) exists and is continuous on (a − η, b + η), for n sufficiently large
we have

∥M (r)
n (f, x)−f (r)(x)∥ ≤ K4n

−1

m∑
i=r

∥f (i)∥+K5ω(f
(r+1), n−1/2)+O(n−2),

where k4 and K5 are constants independent of n v. ω(f, δ) s the modulus
of continuity of f on (a− η, b+ η) and ∥.∥ represents the sup-norm on
the interval [0,∞).

Proof. Taylor series expansion of f is given by

f(t) =
m∑
i=0

f (i)(x)

i!
(t− x)i + (t− x)mχ(t)

f (m)(ξ)− f (m)(x)

m!

+(1− χ(t))h(t, x),

where t < ξ < x and χ(t) is the characteristic function on (a−η, b+η).
Further we have for t ∈ (a− η, b+ η) and x ∈ [a, b]

f(t) =
m∑
i=0

f (i)(x)

i!
(t− x)i + (t− x)m

f (m)(ξ)− f (m)(x)

m!

and for t ∈ [0,∞)\(a− η, b+ η) we define

h(t, x) = f(t)−
m∑
i=0

f (i)(x)

i!
(t− x)i.

Then

M (r)
n (f, x)− f (r)(x)

=

{
m∑
i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt− f (r)(x)

}

+

{∫ ∞

0

W (r)
n (t, x)

f (m)(ξ)− f (m)(x)

m!
(t− x)mχ(t)dt

}
+

{∫ ∞

0

W (r)
n (t, x)(1− χ(t))h(t, x)dt

}
:= J1 + J2 + J3.

We use Lemma 4 to estimate J1, as below

J1 =
m∑
i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt− f (r)(x)
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=
m∑
i=0

f (i)(x)

i!

i∑
k=0

(
i
k

)
(−x)i−k

∫ ∞

0

W (r)
n (t, x)tkdt− f (r)(x)

=
m∑
i=0

f (i)(x)

i!

i∑
k=0

(
i
k

)
(−x)i−k ∂r

∂xr

[
(n+ k + 1)!

(n+ 1)!nk
xk + (k + 1)k

× (n+ k)!

(n+ 1)!nk
xk−1 +O(n−2)

]
− f (r)(x).

Therefore we can say that

∥J1∥ ≤ K4n
−1

m∑
i=r

∥f (i)∥ − f (r)(x)

uniformly in x ∈ [a, b]. Now we proceed for J2.

|J2| ≤
∫ ∞

0

|W (r)
n (t, x)| |f

(m)(ξ)− f (m)(x)|
m!

|t− x|mχ(t)dt

≤ ω(f (m), δ)

m!

∫ ∞

0

|W (r)
n (t, x)|

(
1− |t− x|

δ

)
|t− x|mdt

≤ ω(f (m), δ)

m!

[ ∫ ∞

0

|W (r)
n (t, x)||t− x|mdt+

∫ ∞

0

|W (r)
n (t, x)|

×|t− x|m+1δ−1dt

]
.

As in the previous theorem, for some s > 0 and δ = −1/2 we get

∥J2∥ ≤ ω(f (m), δ)

m!
[O(n(r−m)/2) + n1/2O(n(r−m−1)/2) +O(n−s)]

≤ K5ω(f
(m), δ).O(n−(m−r)/2).

For J3, since t ∈ [0,∞)\(a− η, b+ η) so we can choose a δ > 0 in such
a way that |t − x| ≥ δ for all x ∈ [a, b]. Applying Lemma 2 and then
from Theorem 1

|J3| =

(
n

n+ 1

) ∑
2i+j≤r
i,j≥0

(n+ 2)i
|qi,j,r(x)|
|x(1 + x)|r

∞∑
v=1

|(v − 1)− (n+ 2)x|j

×bn,v(x)

∫
|t−x|≥δ

qn,v(t, x)|h(t, x)|dt
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≤ K1

∑
2i+j≤r
i,j≥0

(n+ 2)i
{(

1

n+ 1

) ∞∑
v=1

bn,v(x)|(v − 1)−

(n+ 2)x|2j
}1/2{

n

∫ ∞

0

qn,v(t, x)dt

}1/2{(
n

n+ 1

) ∞∑
v=1

bn,v(x)

×
∫ ∞

0

qn,v(t, x)|h(t, x)|dt
}1/2

.

Hence from Lemma 1 and Lemma 3

∥J3∥ ≤ K1.O(ni).O(nj).O(n−β),

where β ≥ {γ,m} is an integer for which there exists a constant K6

such that |h(t, x)| ≤ K6|t − x|β for |t − x| ≥ δ Thus ∥J3∥ = O(n−q)
for some q > 0 uniformly on [a, b]. Gathering J1, J2 and J3, we get the
result. �

3.3. Asymptotic Formula.

Theorem 3. If f ∈ Cγ[0,∞), γ > 0 such that f (r+2) exists at x ∈
[0,∞) then

lim
n→∞

n[M (r)
n (f, x)− f (r)(x)] =

r(r + 3)

2
f (r)(x) + (r + 2)(1 + x)

×f (r+1)(x) +
x(x+ 1)

2
f (r+2)(x).

Proof. Taylor’s expansion of f is given by

f(t) =
r+2∑
i=0

f (i)(x)

i!
(t− x)i + ϵ(t, x)(t− x)r+2,

where ϵ(t, x) → 0 as t → x. Therefore taking as in Theorem 1

n[M (r)
n (f, x)− f (r)] = n

{ r+2∑
i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt−

f (r)(x)

}
+

∫ ∞

0

W (r)
n (t, x)ϵ(t, x)(t− x)r+2dt

:= E1 + E2.
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To find E1, we use Lemma 3 and get

E1 = n
r+2∑
i=0

f (i)(x)

i!

i∑
k=0

(
i
k

)
(−x)i−k

∫ ∞

0

W (r)
n (t, x)tkdt− nf (r)(x)

= n
f (r)(x)

r!

{
M (r)

n (tr, x)− r!
}
+ n

f (r+1)(x)

(r + 1)!

{
M (r)

n (tr+1, x) +

(r + 1)(−x)M (r)
n (tr, x)

}
+ n

f (r+2)(x)

(r + 2)!

{
M (r)

n (tr+2, x) + (r + 2)

×(−x)M (r)
n (tr+1, x) +

(r + 1)(r + 2)

2!
x2M (r)

n (tr, x)

}
.

For each x ∈ [0,∞), applying Lemma 4

E1 = nf (r)(x)

[
(n+ r + 1)!

(n+ 1)!nr
− 1

]
+ n

f (r+1)(x)

(r + 1)!

[{
(n+ r + 2)!

(n+ 1)!nr+1

×(r + 1)!x+ (r + 2)(r + 1)
(n+ r + 1)!

(n+ 1)!nr+1
r!

}
+ (r + 1)(−x)

×(n+ r + 1)!

(n+ 1)!nr
r!

]
+ n

f (r+2)(x)

(r + 2)!

[{
(n+ r + 3)!

(n+ 1)!nr+2

(r + 2)!

2
x2

+(r + 1)(r + 2)
(n+ r + 2)!

(n+ 1)!nr+2
(r + 1)!x

}
+ (r + 2)(−x)

×
{
(n+ r + 2)!

(n+ 1)!nr+1
(r + 1)!x+ (r + 2)(r + 1)

(n+ r + 1)!

(n+ 1)!nr+1
r!

}
+
(r + 1)(r + 2)

2!
x2 (n+ r + 1)!

(n+ 1)!nr
r!

]
+O(n−2).

Taking limit as n → ∞ on right side, the coefficients of f (r)(x), f (r+1)(x)

and f (r+2)(x) are r(r+3)
2

, (r+2)(1+x) and x(x+1)
2

respectively. In order
to complete the theorem we can easily show that J2 → 0 as n → ∞
accordingly as in Theorem 1. �

Remark 1. In particular the asymptotic formula in ordinary approxi-
mation for bounded functions can easily be found as

lim
n→∞

n[M (r)
n (f, x)− f (r)(x)] = 2(1 + x)f (1)(x) +

x(x+ 1)

2
f (2)(x).
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